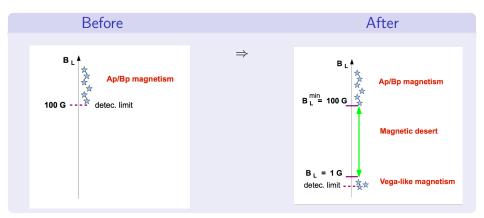
The dichotomy between strong and ultra-weak magnetic fields among intermediate-mass stars


F. LIGNIÈRES

IRAP - Observatoire Midi-Pyrénées - Toulouse with M. AURIÈRE, P. PETIT, G. WADE, T. BOHM and others

PNPS, Besançon, 2014

Intermediate-mass star magnetism

Summary of the recent observational progress

- two magnetisms separated by a magnetic desert
- Vega-like : constraint on the magnetic fields of typical intermediate-mass stars ?

<ロト <回ト < 注ト < 注ト = 注

Observations

~

- all detected magnetic stars have Ap type aboundance anomalies
- \blacktriangleright approximatively inclined dipole, with B_d from the detection limit \sim 300 G up to 30 kG
- stable over time

Β _ι '	surface-integrated line-of-sight component	Interpretation
	Ap/Bp magnetism	 Ap type peculiar abundances require strong enough fields (Michaud 1970) the fossil field hypothesis
≈ 100 G	detec. limit	
	???	

<ロト <回ト < 注ト < 注ト = 注

Observations

~

- all detected magnetic stars have Ap type aboundance anomalies
- \blacktriangleright approximatively inclined dipole, with B_d from the detection limit \sim 300 G up to 30 kG
- stable over time

B _L '	surface-integrated line-of-sight component	Open questions
	Ap/Bp magnetism	 are all Ap/Bp stars magnetic ? a low tail of the magnetic strength distribution among non Ap/Bp stars ?
≈ 100 G	detec. limit	
	???	

<ロト <回ト < 注ト < 注ト = 注

A survey of 28 suspected weakly magnetic Ap/Bp stars

- all stars were detected (Musicos/Narval)
- $\blacktriangleright\,$ fitted dipolar fields higher than $\sim\,300$ G

As expected all Ap/Bp stars are magnetic and B exceeds some critical value

What about a low field continuation of Ap/Bp magnetism among non-Ap/Bp stars $\ref{eq:stars}$

A survey of 28 suspected weakly magnetic Ap/Bp stars

- all stars were detected (Musicos/Narval)
- $\blacktriangleright\,$ fitted dipolar fields higher than $\sim\,300$ G

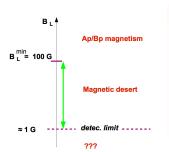
As expected all Ap/Bp stars are magnetic and B exceeds some critical value

What about a low field continuation of Ap/Bp magnetism among non-Ap/Bp stars $\ref{eq:stars}$

A survey of 28 suspected weakly magnetic Ap/Bp stars

- all stars were detected (Musicos/Narval)
- $\blacktriangleright\,$ fitted dipolar fields higher than $\sim\,300$ G

As expected all Ap/Bp stars are magnetic and B exceeds some critical value


What about a low field continuation of Ap/Bp magnetism among non-Ap/Bp stars $\ref{eq:stars}$

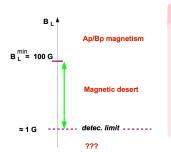
▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

No magnetic fields detection among non-Ap/Bp intermediate-mass stars, down to a few Gauss (in B_L)

Spectropolarimetric surveys of sharp line late-B and A stars

- ► ~ 50 stars (Am, HgMn, normal A/B stars) with Musicos@TBL, ~ 50 G upper limit (Shorlin et al. 2002)
- ▶ 15 stars (11 Am, 4 HgMn) with Narval@TBL and Espadons@CFHT, ~ 1 10 G upper limit, (Auriere et al. 2010)
- ▶ 47 HgMn stars with HARPSpol@ESO, \sim 3 30 G upper limit, (Makaganiuk et al. 2011)

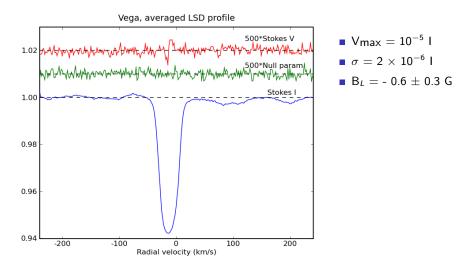
Consequences of the magnetic desert


- a true magnetic dichotomy
- B^{min}_d contains informations about the origin of Ap/Bp magnetism
- B^{min}_d = 300G higher but not necessarily equal to the field that prevents chemical mixing in Ap/Bp stars

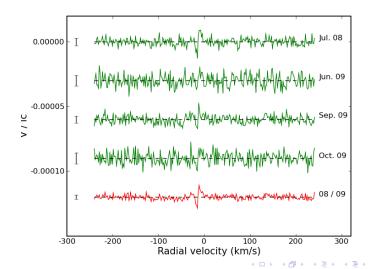
(日) (四) (문) (문) (문) (문)

No magnetic fields detection among non-Ap/Bp intermediate-mass stars, down to a few Gauss (in B_L)

Spectropolarimetric surveys of sharp line late-B and A stars


- ► ~ 50 stars (Am, HgMn, normal A/B stars) with Musicos@TBL, ~ 50 G upper limit (Shorlin et al. 2002)
- ▶ 15 stars (11 Am, 4 HgMn) with Narval@TBL and Espadons@CFHT, ~ 1 10 G upper limit, (Auriere et al. 2010)
- ▶ 47 HgMn stars with HARPSpol@ESO, \sim 3 30 G upper limit, (Makaganiuk et al. 2011)

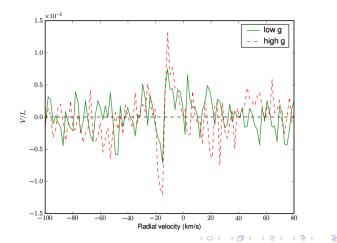
Consequences of the magnetic desert


- a true magnetic dichotomy
- B^{min}_d contains informations about the origin of Ap/Bp magnetism
- B^{min}_d = 300G higher but not necessarily equal to the field that prevents chemical mixing in Ap/Bp stars

Stokes V detection from a 4-nights Narval run dedicated to pulsations search

▲ロ▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 … のへで

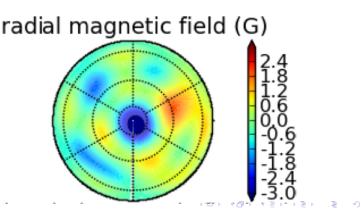
- Stokes V detection from a 4-nights Narval run dedicated to pulsations search
- confirmed at different epochs with Narval@TBL and Espadons@CFHT


Sac

Stokes V detection from a 4-nights Narval run dedicated to pulsations search

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

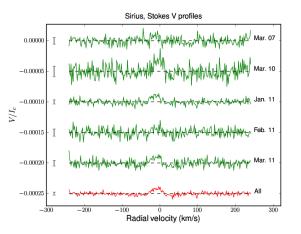
- confirmed at different epochs with Narval@TBL and Espadons@CFHT
- stellar origin of the signal consistent with


- Stokes V detection from a 4-nights Narval run dedicated to pulsations search
- confirmed at different epochs with Narval@TBL and Espadons@CFHT
- stellar origin of the signal consistent with
 - its amplitude increase with the Landé factor g of the lines

- Stokes V detection from a 4-nights Narval run dedicated to pulsations search
- confirmed at different epochs with Narval@TBL and Espadons@CFHT
- stellar origin of the signal consistent with
 - its amplitude increase with the Landé factor g of the lines
 - its rotational modulation P=0.68 d compatible with periods from spectroscopic (Takeda et al. 2008) and interferometric (Monnier et al. 2012) signatures of gravity-darkenning

< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

- Stokes V detection from a 4-nights Narval run dedicated to pulsations search
- confirmed at different epochs with Narval@TBL and Espadons@CFHT
- stellar origin of the signal consistent with
 - its amplitude increase with the Landé factor g of the lines
 - its rotational modulation P=0.68 d compatible with periods from spectroscopic (Takeda et al. 2008) and interferometric (Monnier et al. 2012) signatures of gravity-darkenning



- Stokes V detection from a 4-nights Narval run dedicated to pulsations search
- confirmed at different epochs with Narval@TBL and Espadons@CFHT
- stellar origin of the signal consistent with
 - its amplitude increase with the Landé factor g of the lines
 - its rotational modulation P=0.68 d compatible with periods from spectroscopic (Takeda et al. 2008) and interferometric (Monnier et al. 2012) signatures of gravity-darkenning

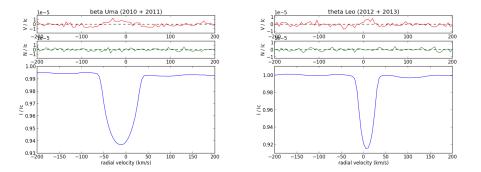
< ロ > (四 > (四 > (三 > (三 >))) 문 (-)

no detectable time variability over three years

Weak Stokes V signal on Sirius and two others Am stars

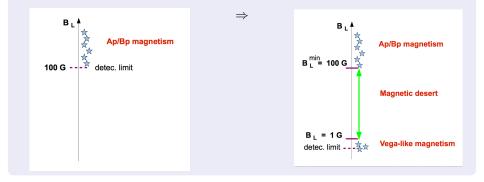
 Detection with Narval and Espadons (Petit et al. 2011) recently with HARPSpol (Kochukhov, 2013)

•
$$V_{max} = 2 \times 10^{-5}$$
 l

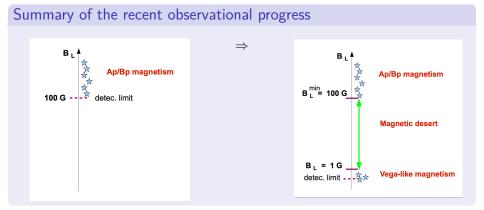

$$\sigma$$
 = 2 $imes$ 10⁻⁶ l

・ロト ・日下・ ・ヨト・・

- $B_L = 0.2 \pm 0.3 \text{ G}$
- Asymmetric V profile


Weak Stokes V signal on Sirius and two others Am stars

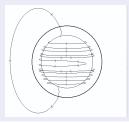
- Strong evidence for a magnetic field on Sirius
- Similar Stokes V profiles on two others bright Am stars : θ Leo and β Uma (Blazere, Petit et al. in preparation)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Summary of the recent observational progress

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

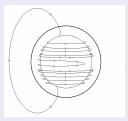


Two magnetisms separated by a magnetic desert

- either the same origin and a bifurcation
- or two different origins (Braithwaite & Cantiello 2012, Tutukov & Fedorova 2010)

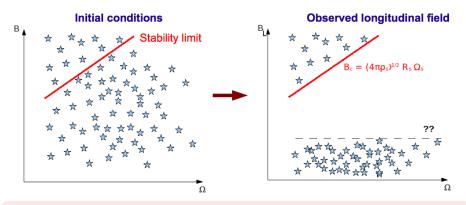
\vec{B} stability in a differentially rotating star (e.g. Spruit 1999)

- ▶ Strong *B* suppress differential rotation and reaches stable configurations
- ▶ Weak poloïdal field $B_p \Rightarrow$ stong azimuthal field $B_\phi \Rightarrow$ Tayler instability


《曰》 《聞》 《臣》 《臣》 三臣 --

Order of magnitude of the critical field (Auriere et al. 2007)

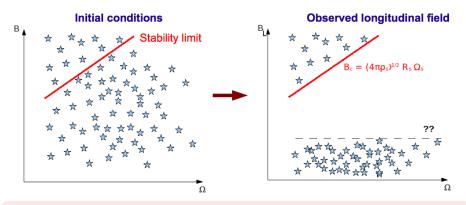
magnetic forces react just on time to avoid $B_{\phi} > B_{pol}$ \Rightarrow stable if $B_{pol} > B_c = (4\pi\rho)^{1/2} r\Omega$


\vec{B} stability in a differentially rotating star (e.g. Spruit 1999)

- ▶ Strong *B* suppress differential rotation and reaches stable configurations
- ▶ Weak poloïdal field $B_p \Rightarrow$ stong azimuthal field $B_\phi \Rightarrow$ Tayler instability

Order of magnitude of the critical field (Auriere et al. 2007)

magnetic forces react just on time to avoid $B_{\phi} > B_{pol}$ \Rightarrow stable if $B_{pol} > B_c = (4\pi\rho)^{1/2} r\Omega$



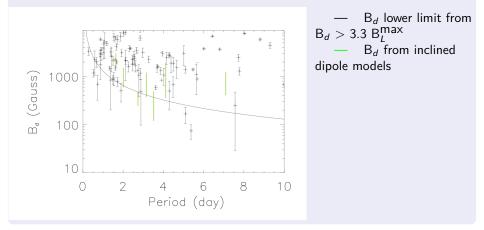
A B_L magnetic desert opens due to the polarity cancellation effect at the surface of stars with destabilized fields

► a good point : $B_c = (4\pi\rho)^{1/2} r\Omega$ at the surface of a typical Ap star (2 M_☉, 2 R_☉, T_{eff} = 10⁴ K, P_{rot} = 5 d) is close to the observed value 300 G

<ロ> (四) (四) (三) (三) (三)

• a prediction : B_c increases with Ω

A B_L magnetic desert opens due to the polarity cancellation effect at the surface of stars with destabilized fields


► a good point : $B_c = (4\pi\rho)^{1/2} r\Omega$ at the surface of a typical Ap star (2 M_☉, 2 R_☉, T_{eff} = 10⁴ K, P_{rot} = 5 d) is close to the observed value 300 G

・ロ・ ・ 日・ ・ モ・

• a prediction : B_c increases with Ω

The Ω dependance of the lower bound of Ap/Bp magnetic fields

B_d and Ω from published data

<ロ> (四)、(四)、(日)、(日)、

臣

- a new observational view : two magnetisms separated by a magnetic desert in B_L
- Vega-like magnetism hard but important to study a 10 targets Large Programme (!) on Narval
- triggers new ideas and modelling efforts (see next talk)
- extention to massive and pre-main-sequence stars?
- financement : d'une demande PNPS à un projet ANR (Imagine)
 merci le PNPS ...

- a new observational view : two magnetisms separated by a magnetic desert in B_L
- Vega-like magnetism hard but important to study a 10 targets Large Programme (!) on Narval
- triggers new ideas and modelling efforts (see next talk)
- extention to massive and pre-main-sequence stars?
- financement : d'une demande PNPS à un projet ANR (Imagine)
 merci le PNPS ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●