Radiation hydrodynamics

Matthias González

Laboratoire AIM, Université Paris Diderot-CEA-CNRS, CEA Saclay

N. Vaytet (ENS Lyon), E. Audit (Maison de la simulation, Saclay) B. Dubroca (CELIA, Bordeaux), G. Chabrier (ENS Lyon) B. Commerçon (ENS Lyon)

Outline

1 Introduction to radiation hydrodynamics

Moments models

3 M1 multigroup

- Academic tests
- Radiative shocks

The radiation hydrodynamics

What is it? dynamic effects of the radiation

When do we have to deal with radiation hydrodynamics?

We have to compare the hydrodynamic energy (or flux) with the radiation one.

$$\frac{E_r}{e} = \frac{a_r T^4}{3/2NkT} \simeq 36 \frac{T^3}{N} \qquad \frac{F_r}{F} = \frac{\sigma T^4}{ue} = \frac{1}{4} \frac{c}{u} \frac{E_r}{e} \simeq 9 \frac{c}{u} \frac{T^3}{N}$$

Relevant applications for radiation hydrodynamics : In astrophysics :

• accretion shocks on massive objects or in formation...

In laboratory plasmas :

radiative shocks...

How to solve the transfer equation?

$$\left(\frac{1}{c}\frac{\partial}{\partial t}+\mathbf{n}\cdot\nabla\right)I(\mathbf{x},t;\mathbf{n},\nu)=\eta(\mathbf{x},t;\mathbf{n},\nu)-\chi(\mathbf{x},t;\mathbf{n},\nu)I(\mathbf{x},t;\mathbf{n},\nu)$$

- 7 parameters : space (3), time (1), direction (2) and frequency (1)
 - Direct integration
 - high cost (time/memory), not (yet) suitable for hydro coupling
 - post-processing approach (cf. RADMC, IRIS code, C. Stehlé's talk)
 - Monte-Carlo methods
 - high cost in optically thick regions
 - Poisson noise
 - Moments models
 - approximations of the physical model

$$\begin{cases} E_r^{\nu} = \frac{1}{c} & \oint I(\mathbf{x}, t; \mathbf{n}, \nu) & d\Omega & \text{Radiative energy} \\ \mathbf{F}_r^{\nu} = & \oint I(\mathbf{x}, t; \mathbf{n}, \nu) & \mathbf{n}d\Omega & \text{Radiative flux} \\ \mathbb{P}_r^{\nu} = \frac{1}{c} & \oint I(\mathbf{x}, t; \mathbf{n}, \nu) & \mathbf{n} \otimes \mathbf{n}d\Omega & \text{Radiative pressure} \end{cases}$$

The moments models

Hierarchy of moments equations

If LTE and no scattering with the two first equations :

$$\begin{cases} \partial_t E_r^{\nu} + \nabla \cdot \mathbf{F}_r^{\nu} = \sigma^{\nu} (4\pi B^{\nu} - cE_r^{\nu}) \\ \frac{1}{c} \partial_t \mathbf{F}_r^{\nu} + c\nabla \cdot \mathbb{P}_r^{\nu} = -\sigma^{\nu} \mathbf{F}_r^{\nu} \end{cases}$$

Needs to truncate it and specify a closure relation

$$\mathbb{P}_r^{\nu} = f(E_r^{\nu}, \mathbf{F}_r^{\nu})$$

The closure relation

• Flux Limited Diffusion (FLD)

- isotropic radiation field, stationary radiative flux
- rapid BUT
- ad-hoc flux limiter λ to enforce causality
- flux always colinear and proportional with the energy gradient

M1 model

- Lorentz transformation of Planck function (Levermore 1984)
- Maximization of radiation entropy (Dubroca & Feugeas 1999)
- local analytical formulation
- take radiation anisotropies into account
- exact in both diffusive and free streaming limits

The different possible moment approximations

• FLD vs M1 :

FLD in stellar interiors use M1 if

- optically thick/thin regions co-exist
- radiation anisotropies (multi-D effects)
- grey vs multigroup

Example in protoplanetary disk use of an hybrid scheme (e.g. Kuiper et al. 2010, Flock et al. 2013 with the PLUTO code) :

- grey FLD for disk
- multigroup ray-tracing for star irradiation
- Reduced speed of light approximation (RSLA) :
 - to save computational time (explicit vs implicit scheme)
 - e.g. Rosdahl et al. 2013 (galaxy formation) with the RAMSES code

Numerical implementation

The HERACLES code : http://irfu.cea.fr/Projets/Site_heracles

3D, MPI parallelized Operator splitting

- hydro : explicit scheme (MUSCL)
- radiation : implicit scheme (preconditioned Gauss-Seidel)

In our simulations, radiation step takes about 90% to 99% of total CPU time !

```
hydro step \sim 10 \mus per cell
```

radiation step \sim few 100 $\mu {\rm s}$ per cell

Numerical tests

- source at T=1000 K in domain with T=300 K
- constant or frequency-, T-dependent opacities
- comparison with a kinetic model : error about 0.5%

\implies Validation of M1 in all the regimes

Introduction to radiative shocks

(cf. J.P. Chièze/C. Stehlé's talk)

Reproduced on laser facilities Measures of radiography/spectrum, electron densities

supercritical

M1 vs FLD for grey radiative shock

Radiative supercritical shock with v=20 km/s

M1 implicit vs M1 explicit with RSLA

Matthias González (Univ. Paris Diderot)

February 25, 2014 12 / 14

Multigroup radiative shocks

- Argon gas in laser-driven conditions
- Ar opacities from the ODALISC database
- simulations with 1-5-10-20-50-100 groups

(Vaytet et al. 2013)

- The precursor size increases as a function of the groups number
- Seems to converge for 50-100 groups

\implies Crucial importance of multigroup effects

Matthias González (Univ. Paris Diderot)

prospective PNPS

Summary and perspectives

• Summary

- development of M1 multigroup model
- application to (laboratory) radiative shocks
 - \star influence of multigroup on the precursor size
 - * effects on electron densities detectable in experiments
 - ★ detection of adaptation zones
- application to star formation (cf. Vaytet et al. 2012, B. Commerçon's talk)
 - \star in 1D, no big changes compared to FLD

Perspectives

- development of multigroup scheme in the 3D AMR RAMSES code
 - ★ FLD model (almost done)
 - ★ M1 model (in progress)
- ► fair comparison between methods/numerical improvements
- applications to star formation simulations
 - * should have more impact in 3D (anisotropy due to the disk)