Stellar death and Supernovae

Luc Dessart

Laboratoire Lagrange Observatoire de la Cote d'Azur

- Strong connection to stellar physics, evolution (rotation, B, comp. ...)
- Means of explosion: core collapse and combustion
- The transient sky: Old census and recent discoveries
- Future prospects: Modelling and observations

Stellar Explosion Making use of binding energy

- Gravitational Binding Energy: collapse of a ~1M_☉ WD to a NS releases 10⁵³erg => Collapse of the iron core if the ultimate fate of all massive stars (M≥8M_☉). Neutrinos are key for explosion. Young stellar populations.
- Nuclear Binding Energy: combustion of ~1M_☉ of C/O to intermediate/irongroup mass elements releases ~10⁵¹erg => Thermonuclear runaway of a Chandrasekhar-mass WD. Combustion is key. Low-mass graveyard (WD+H/ He; WD+WD) – Old stellar populations.

- \Rightarrow Energy released unbinds and ejects the star (fully/partially).
- \Rightarrow SN radiation powered by shock-deposited and/or radioactive decay energy
- \Rightarrow SN radiation influenced by progenitor structure (M_{\star}, R_{\star})
- \Rightarrow Use SN radiation to constrain progenitor and explosion properties

Observations of the Transient Sky

Ongoing transient surveys (many un-targeted):

e.g., Palomar Transient Factory, Pan-STARRS, La Silla Quest, CHASE, Catalina survey

+ Large programs: e.g. ESO/PESSTO

Core-collapse supernovae from massive star explosions

The core-collapse explosion mechanism

- Neutrino-driven explosion mechanism probably for all standard core-collapse SNe
- Numerical challenge (multi-D effects, neutrino transport)
- Dependency on core structure / compactness => pre-SN star (M, single/binary)?
- Maximum MS mass for successful explosion? Could be as low as $20-25M_{\odot}$

Core collapse does **NOT** imply a successful supernova explosion

$8M_{\odot}$ progenitor (Mueller et al. 2012)

Diversity of observed core-collapse supernovae

Spectral classification reflects variations in composition, ionization, excitation, T, V(m) and light-curve morphology

=> Connection to pre-SN evolution + explosion

$s^{-1} cm^{-2} Å^{-1}$ **Red-supergiant stars are progenitors** $[10^{-15} erg$ of Type II-Plateau Supernovae $\overset{\mathrm{F}}{\succ}$ Case study of SN1999em (Dessart & Hillier 2011, Dessart et al. 2013) Å-1] $\rm s^{-1}~cm^{-2}$ Modeling supports a 500R_o 15M_o RSG turned into a ~10⁵¹erg ejecta erg $F_{\lambda} [10^{-15},$ 12 0 Magnitude 0.514 B + 0.5Å-17 U+2.0 16 cm⁻² Observed ¹ (H) (H) (H) s' 18 $\diamond_{\diamond\diamond\diamond\diamond}\diamond$ ^^^ & E(B-V) = 0.10erg \diamond SN1999em $[10^{-15}]$ 20 • m15mlt3@11.5Mpc 100 150 -5050 200 0 Days since Explosion ۲ ۲

RSG progenitors of SNe II-P identified on pre-explosion images Smartt, van Dyk, Leonard and Co

SN 2008bk

- A handful of SNe II-P progenitors identified photometrically as RSG stars (inferred mass <18M_☉).
- Supergiant progenitors of SNe IIb also detected (e.g., SN 1993J)
- But no SN Ia/Ib/Ic progenitor detected yet....

SN IIb/Ib/Ic Light curves: Observations vs. models

Observations

- Rise time to peak of ~20 days
- Narrow peak (20d).
- SNe IIb/Ib/Ic have similar LC props.
- Scatter in peak brightness
- \Rightarrow Narrow light curves suggest low mass ejecta
- \Rightarrow Single WR stars probably too massive at death
- ⇒ SN IIb/Ib/Ic rates hard to reconcile with single stars and standard IMF
- ⇒ Solution: interacting binaries

Drout et al. (2010)

Importance of mass loss for envelope stripping

Radiation-driven Wind mass loss

- $dM/dt \sim 10^{-5} M_{\odot}/yr$; f(M,Z, Ω)
- Key for higher mass stars
- Final mass of 10-20 M_{\odot}

Hirschi et al. (2004); Georgy et al. (2011)

Binary mass transfer

- 70% of massive stars in binary systems
- $dM/dt \sim 10^{-4} M_{\odot}/yr$;
- Key for lower mass stars
- Final mass as low as $2-3M_{\odot}$

SN IIb/Ib/Ic Light curves: Observations vs. models

Observations

- Rise time to peak of ~20 days
- Narrow peak (20d).
- SNe IIb/Ib/Ic have similar LC props.
- Scatter in peak brightness

Models

- Inputs: binary stars of $15-25M_{\odot}$
- Early, narrow peak with fast nebular decline
- low-mass ejecta(<5M_☉)
- Favors Binary star progenitors (single WRs too massive at death)
- Confirms expectations form SN populations (Eldridge, Smith etc.)

Core-collapse supernovae from massive star explosions

LGRB/SNe: Collapsar and/or magnetar?

- Massive stars associated with LGRBs/SNe
- Key role of Rotation :

1) Collapsar model: failed explosion, BH formation, disk formation, GRB, SN powered from disk wind. Huge rotation + core compactness (*Woosley 1993*)

2) Magnetar model: GRB + SN powered by fast-spinning proto-magnetar (*Wheeler et al. 2000*). Magneto-rotation explosion (*Dessart et al. 2008*).

- Reduce dL/dt by quenching dM/dt at low Z => $M_i \approx M_f$
- GRB/SNe show diverse ejecta masses and energies (host Z?)
- BH formation uncertain for lower mass progenitors => Favors magnetars?

Explosion Properties of GRB-SNe				
GRB–SN	$M_{ m Ni}$ (M_{\odot})	$\frac{E_K}{(10^{51} \text{ erg})}$	$M_{\rm ej}$ (M_{\odot})	Reference
1998bw	0.7	30	11	Iwamoto et al. (1998)
2003dh	0.35	38	8	Mazzali et al. (2003)
20031w	0.55	60	13	Mazzali et al. (2006b)
2006aj	0.2	2	2	Mazzali et al. (2006a)
2010bh	0.1	14	2.2	Cano et al. (2011)
2009nz (nominal)	0.35	2.3	1.4	This paper
2009nz (maximal)	0.6	8.4	3.5	This paper

Berger et al. (2011)

Superluminous Supernovae: Mechanisms

- Powered by interaction with CSM : $E_{kin} \rightarrow E_{th} \rightarrow E_{rad}$
- Powered by huge ⁵⁶Ni mass : pair-instability SNe or extreme CCSNe
- Powered by magnetar radiation: Delayed energy injection from compact object with large B and $\Omega =>$ particle + X-rays/ γ -rays emission

Summary

- Huge progress on observational side: Wide-field high-cadence surveys. LSST, ELT!
- CCSNe come from low/moderate mass massive stars either single or binaries
- Fate of more massive stars unclear. Complete collapse to a black hole?
- GRB/SN progenitors: BH formation not guaranteed. Collapsar or Magnetar?
- Super-luminous SNe at z~1: Magnetar powered? Probes of distant universe.
- Diversity of faint/fast transients: variety of burning configurations in WDs. Tough numerical challenge for RT and hydro.
- Need to understand stellar explosions to understand the chemical evolution of the Universe, the formation of compact objects (BH, pulsars, magnetars), the origin of LGBRs etc.

=> Strong need for radiative-transfer modeling of SN light curves and spectra + multi-D hydro modeling of explosion